12 References
Button, K. S., Ioannidis, J. P. a, Mokrysz, C., Nosek, B. a, Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews: Neuroscience, 14(5), 365–76.
Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, & Social Sciences and Humanities Research Council of Canada. (2014). Tri-Council Policy Statement: Ethical conduct for research involving humans.
Cohen, J. (1962). The statistical power of abnormal-social psychological research: A review. The Journal of Abnormal and Social Psychology, 65(3), 145–153. http://doi.org/10.1037/h0045186
Collaboration, O. S. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716-aac4716. http://doi.org/10.1126/science.aac4716
de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 1–12. http://doi.org/10.3758/s13428-014-0458-y
Difallah, D., Filatova, E., & Ipeirotis, P. (2018). Demographics and Dynamics of Mechanical Turk Workers. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining - WSDM '18, (August), 135–143. http://doi.org/10.1145/3159652.3159661
Hara, K., Adams, A., Milland, K., Savage, S., Callison-Burch, C., & Bigham, J. P. (2018). A Data-Driven Analysis of Workers' Earnings on Amazon Mechanical Turk. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems - CHI '18, 1–14. http://doi.org/10.1145/3173574.3174023
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 61–83. http://doi.org/10.1017/S0140525X0999152X
Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E. J. (2014). Robust misinterpretation of confidence intervals. Psychonomic Bulletin and Review, 21(5), 1157–1164. http://doi.org/10.3758/s13423-013-0572-3
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine.
Ipeirotis, P. G. (2010). Analyzing the Amazon Mechanical Turk marketplace. XRDS: Crossroads, The ACM Magazine for Students, 17(2), 16. http://doi.org/10.1145/1869086.1869094
Kerr, N. L. (1998). HARKing: Hypothesizing After the Results are Known. Personality and Social Psychology Review, 2(3), 196–217. http://doi.org/10.1207/s15327957pspr0203_4
Lakens, D. (2014). Performing high-powered studies efficiently with sequential analyses. European Journal of Social Psychology, 44(7), 701–710. http://doi.org/10.1002/ejsp.2023
Lakens, D. (2017). Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses. Social Psychological and Personality Science, 8(4), 355–362. http://doi.org/10.1177/1948550617697177
Lindsay, D. S., Simons, D. J., & Lilienfeld, S. O. (2016). Research Preregistration 101. Observer.
Nosek, B. A., & Bar-Anan, Y. (2012). Scientific Utopia: I. Opening Scientific Communication. Psychological Inquiry, 23(3), 217–243. http://doi.org/10.1080/1047840X.2012.692215
Nosek, B. A., Spies, J. R., & Motyl, M. (2012). Scientific Utopia: II. Restructuring Incentives and Practices to Promote Truth Over Publishability. Perspectives on Psychological Science, 7(6), 615–631. http://doi.org/10.1177/1745691612459058
Pittman, M., & Sheehan, K. (2016). Amazon’s mechanical turk a digital sweatshop? Transparency and accountability in crowdsourced online research. Journal of Media Ethics: Exploring Questions of Media Morality, 31(4), 260–262. http://doi.org/10.1080/23736992.2016.1228811
Poushter, J. (2016). Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies. Pew Research Center. http://doi.org/10.1017/CBO9781107415324.004
Ross, J., Zaldivar, A., Irani, L., & Tomlinson, B. (2010). Who are the Turkers? Worker Demographics in Amazon Mechanical Turk. Chi Ea 2010, (July 2016), 2863–2872. http://doi.org/10.1145/1753846.1753873
Rouder, J. N. (2014). Optional stopping: no problem for Bayesians. Psychonomic Bulletin & Review, 21(2), 301–308. http://doi.org/10.3758/s13423-014-0595-4
Rouder, J. N. (2016). The what, why, and how of born-open data. Behavior Research Methods, 48(3), 1062–1069. http://doi.org/10.3758/s13428-015-0630-z
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. http://doi.org/10.1177/0956797611417632
Smith, A. (2016). Gig Work, Online Selling and Home Sharing.
Society for the Improvement of Psychological Science. (n.d.). Retrieved June 19, 2018, from https://improvingpsych.org/
van 't Veer, A. E., & Giner-Sorolla, R. (2016). Pre-registration in social psychology—A discussion and suggested template. Journal of Experimental Social Psychology. http://doi.org/10.1016/j.jesp.2016.03.004
Vankov, I., Bowers, J., & Munafò, M. R. (2014). On the persistence of low power in psychological science. Quarterly Journal of Experimental Psychology, 67(5), 1037–1040. http://doi.org/10.1080/17470218.2014.885986
Velicer, W. F., Cumming, G., Fava, J. L., Rossi, J. S., Prochaska, J. O., & Johnson, J. (2008). Theory Testing Using Quantitative Predictions of Effect Size. Applied Psychology, 57(4), 589–608. http://doi.org/10.1111/j.1464-0597.2008.00348.x